Home > Nicaragua News > Decorating semiconductors at the atomic scale

Decorating semiconductors at the atomic scale

wallpapers Nicaragua News 2020-10-26
Semiconductors can respond to heat or light to convert one form of energy to another. Combining two different semiconductors creates useful properties for devices. The way these combinations work depends on how the semiconductors are arranged and contact one another. Researchers have developed a new way to grow semiconductor crystals about 100,000 times smaller than the width of a human hair. These semiconductor crystals grow on similarly sized forms of a different semiconductor ACS Nano, "Synthesis of a Hybrid Nanostructure of ZnO-Decorated MoS 2 by Atomic Layer Deposition". This new synthesis method independently controls the arrangements and sizes of the crystals. Layers of zinc and oxygen atoms in yellow and blue are deposited onto the surfaces of nanowires of molybdenum disulfide in purple. These atoms grow into arrays of semiconductor crystals at sites of defects on the surfaces. Image: Stacey Bent Stanford University Researchers can achieve advanced properties for functional devices only if the materials are the right size and in the right arrangements. This research showed how one semiconductor arranged itself as nanocrystals in response to the surface structure of another. The final sizes of the crystals were easy to control. These structures are much more intricate than the flat layers of semiconductors in conventional transistors. This ability to control their formation could lead to new applications, for example as sensors and catalysts, further advancing nanoscience. Researchers formed semiconductors from different components by adding one atomic layer at a time. They grew nanocrystals of zinc oxide on molybdenum disulfide surfaces in precise arrangements and sizes. These materials could be used in sensors and catalysts. The structures were created by first depositing molybdenum trioxide films. Chemical reactions converted these to molybdenum disulfide films. Higher temperatures produced more ordered films with fewer defects. Repeated cycles of atomic layer deposition placed zinc oxide atoms on the films. The researchers monitored changes in the new material’s order and nanocrystal growth during this process. The arrangements of the nanocrystals were determined by the pattern of defects on the molybdenum disulfide. These methods also were used to grow zinc oxide nanocrystals on three-dimensional molybdenum disulfide nanowires. This new advance creates semiconductor materials in ways that are predictably controlled by the synthesis process.
MIS-ASIA is an online content marketing platform that has a large number of visitors worldwide. It is considered to be the leading IT, mechanical, chemical, and nanomaterial information distributor in the Asia-Pacific region. The MIS-ASIA website provides high-quality articles and news on digital information technology, mechanical technology, nanotechnology, biology and science for scientists, engineers and industry experts, machinery suppliers and buyers, chemical suppliers and laboratories. If you need advertising and posting service, or you need to start sponsorship, please contact us.
Say something
  • All comments(0)
    No comment yet. Please say something!
Tag: