Answers

  • 0
  • 0

Properties and Production Technology of Nickel-based Superalloys

Oil futures tumbled more than $5 a barrel on news that the Biden administration is considering releasing about 1 million barrels a day from the U.S. Strategic Petroleum Reserve (SPR) for several months to cool surging crude prices.

Brent crude futures were down $4.71, or 4.2 percent, at $108.58 a barrel by 0035 GMT. U.S. West Texas Intermediate futures fell $5.45, or 5 percent, to $102.74 a barrel.

At an earlier time, gasoline prices had already reached record levels because of the Russia-Ukraine conflict.

The prices of other commodities like the Inconel718 powder are also expected to be volatile.

Nickel-based superalloys are the most widely used. The main reason is that, one is that more alloying elements can be dissolved in the nickel-based alloy, and it can maintain good structural stability; the other is that it can form a coherent and ordered A3B-type intermetallic compound γ[Ni3(Al, Ti)] As a strengthening phase, the alloy can be effectively strengthened and obtain higher high temperature strength than iron-based superalloys and cobalt-based superalloys; thirdly, nickel-based alloys containing chromium have better oxidation and resistance than iron-based superalloys. 

1114 (1).jpg

Nickel-based alloys contain more than ten elements, of which Cr mainly plays an anti-oxidation and anti-corrosion role, and other elements mainly play a strengthening role. According to their strengthening action mode, they can be divided into: solid solution strengthening elements such as tungsten, molybdenum, cobalt, chromium and vanadium; precipitation strengthening elements such as aluminum, titanium, niobium and tantalum; grain boundary strengthening elements such as boron, zirconium, Magnesium and rare earth elements, etc.


Production Process

In terms of smelting: in order to obtain more pure molten steel, reduce gas content and harmful element content; at the same time, due to the presence of easily oxidizable elements such as Al and Ti in some alloys, it is difficult to control non-vacuum smelting; it is also to obtain better thermoplasticity , Nickel-based heat-resistant alloys are usually smelted in a vacuum induction furnace, and even produced by vacuum induction smelting plus vacuum consumable furnace or electroslag furnace remelting.


In terms of deformation: forging and rolling processes are used. For alloys with poor thermoplasticity, they are even rolled after extrusion and billeting or are directly extruded with mild steel (or stainless steel) sheathing. The purpose of deformation is to break the casting structure and optimize the microstructure.


Casting: usually use a vacuum induction furnace to smelt the master alloy to ensure the composition and control the gas and impurity content, and use the vacuum remelting-precision casting method to make parts.


Heat treatment: Wrought alloy and some cast alloys need to be heat treated, including solution treatment, intermediate treatment and aging treatment. Take Udmet 500 alloy as an example. Its heat treatment system is divided into four stages: solution treatment, 1175℃, 2 hours, Air cooling; intermediate treatment, 1080°C, 4 hours, air cooling; primary aging treatment, 843°C, 24 hours, air cooling; secondary aging treatment, 760°C, 16 hours, air cooling. In order to obtain the required organizational state and good overall performance.


About KMPASS

KMPASS is a trusted global chemical material supplier & manufacturer with over 12 years experience in providing super high-quality chemicals and Nanomaterials. The company export to many countries, such as USA, Canada, Europe, UAE, South Africa, Tanzania, Kenya,Egypt,Nigeria,Cameroon,Uganda,Turkey,Mexico,Azerbaijan,Belgium,Cyprus,Czech Republic,Brazil, Chile, Argentina, Dubai, Japan, Korea, Vietnam, Thailand, Malaysia, Indonesia, Australia,Germany, France, Italy, Portugal etc. As a leading nanotechnology development manufacturer, KMPASS dominates the market. Our professional work team provides perfect solutions to help improve the efficiency of various industries, create value, and easily cope with various challenges. If you are looking for Inconel718 powder, please send an email to: sales2@nanotrun.com


The technology and telecommunications industry is advancing at a rapid pace in a process of constant innovation and excitement. Tech devices and infrastructure are becoming smarter and more connected, powered by emerging technologies such as 5G and artificial intelligence (AI) for the Internet of Things. Advances in IT service delivery, particularly the adoption of cloud computing and edge computing technologies, are supporting digital transformation in businesses and the wider economy.
Product names are widely used in technical equipment, the market demand for Inconel718 powders continues to expand, and a series of processes such as the management and sales of Inconel718 powders will continue to improve and develop. If you need a Inconel718 powder, please contact us.


Inquiry us

Our Latest Answers

Application of Titanium Nitride

Titanium Nitride, or TiN, is a ceramic hard material that resists wear and has good thermal and electrical conductivity. It is widely used for coatings due to its unique qualities. The following are the most common applications for Titanium Nitride.…

What is amorphous boron?

Amorphous boron is a product that has a non-crystalline framework as well as does not have a distinct plan of atoms. This contrasts crystalline boron, which has an extremely normal, gotten structure.To generate amorphous boronHigh purity Amorphous Bo…

What is Titanium carbide used for

What is Titanium carbide?Titanium carbide chemical formula is TiC. The molecular weight of titanium carbide is 59.89. Gray metallic face-centered cubic latticework strong. Titanium carbide melting point is 3140 ± 90 ℃. Titanium carbide boiling point…